Nonspreading wave packets

M. V. Berry

H. H. Wills Physics Laboratory. Tyndall Avenue, Bristol, BS8 ITL, United Kingdom

N. L. Balazs

State University of New York at Stony Brook, Stony Brook, New York 11794

{Received 30 June 1978; accepted 12 September 1978)

We show that for a wave  in the form of an Airy function the probability
density [ propagates in free space without distortion and with constant
acceleration. This “Airy packet” corresponds classically to a family of orbits
represented by a parabola in phase space; under the classical motion this parabola
translates rigidly, and the fact that no other curve has this property shows that
the Airy packet is unique in propagating without change of form. The acceleration
of the packet (which does not violate Ehrenfest’s theorem) is related to the
curvature of the caustic {envelope) of the family of world lines in spacetime. When
a spatially uniform force F(t)} acts the Airy packet continues to preserve its
integrity. We exhibit the solution of Schridinger’s equation for general F(¢) and

discuss the motion for some special forms of F(i).

I. INTRODUCTION

Dispersion in the Schradinger equation (embodying
the ability of classical particles to move at different speeds)
suggests that all wave packets must change their form as
they propagate! in free space. And Ehrenfest’s theorem!
{embodying Newton'’s second law for classical particles)
suggests that no wave packet can accelerate in free space.
It therefore comes as a surprise to discover a wave packet
¥(x,1) whose probability density |y(x,)|2 not only remains
unchanged in form but also continually accelerates, even
though no force acts.

At = 0 this wave packet is

¥(x.0} = Ai(Bx/h %), (1)

where B is an arbitrary constant {taken as positive for
convenience) and Ai denotes the Airy function,2 whose
square is sketched in Fig. I. The “Airy packet” evolves
according to the Schrédinger equation for a particle with

mass m, namely
h2 92x _ ., 9
max? Mo (2)

whose solution is

¥(x,1) = Ai [h—fﬁ

3,2
¥ — Br® (B3t/2mh) [x— (B312/6m?)]
4m? ’

(3)
This is easily verified by direct substitution and use of the
Airy function’s differential equation.? Alternatively, we
could build the solution (3) out of plane waves, by using the
integral representation of the Airy function,? as follows:

h2/3 w
,’b(x Hy=—— f dk eitkx—hk2[2m+hik3/383)
' 278 J-w
It is clear from (3) that [|? does indeed propagate without
spreading, and accelerates to the right with velocity

B312/2m?,
In Sec. Il we explain these two strange properties of the
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Airy packet. Both have a classical origin, and illustrate the
fact that quantum wave functions correspond not to indi-
vidual classical particles but to families of particle orbits.
We shall show that what accelerates in the Airy packet is
not any individual particle but the caustic (i.e., the envelope,
or focus) of the family of orbits. Classical analysis of the
trajectories will reveal that the nonspreading property of
the Airy packet is unique (apart from the trivial plane wave,
for which | |2 is independent of x).

In Sec. 111 we show that Airy packets continue to prop-
agate without spreading when a spatially uniform force F(z)
acts, even if F(t) has arbitrary time dependence. A constant
F(1) can reduce the wave to rest, and an oscillatory F(t)
stimulates the packet into a secular drift with superimposed
oscillations.

I, CLASSICAL MECHANICS OF THE AIRY
PACKET

At any instant ¢ the family of orbits that is the classical
counterpart of the Airy packet is represented by a curve p
= P,{x) in the classical phase space whose variables are the
coordinate ¥ and momentum p. The evolution of the packet
is mirrored classically by the way the curve changes as each
point on it moves in accordance with Hamilton's equa-
tions.

To find the curve Py(x) corresponding to the initial
packet given by Eq. (1), we employ the semiclassical ap-
proximation to the Airy function, obtained by considering
#2/3 to be small (in comparison with | Bx|). Standard as-
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Fig. 1. Probability density
for the Airy wave packet
(D) with B/a#¥3 =],
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ymptotic forms? show that ¥(x,0) is exponentially small for
x > 0 and hence negligible, and oscillatory for x <0, the
precise expression being

0y~ —= (221 Ginle/a + 2(-Bx)2/30] (4
W)~ = |2t sinln/4 + 2A=Bx)¥2/3h] (4)

(—Bx > h¥3), This has a standard semiclassical form?

20 /2
¥(x,0}) = const [(6 S;) oiS+{xWh
dx

N 62S_)" 2 eiS-(x)/hl, (5)

dx2

in which the actions S 4 are 7
S(x) = £(2/3)(—Bx)*?, (6)

and according to a well-known prescription? the classical
momenta corresponding to the point x are
85 +(x)
= Polx)=—"—
p = Po(x) ™

Therefore at t = 0 the Airy packet corresponds to a family
of classical orbits filling a parabola in phase space (Fig. 2).
It will be more convenient to write this in the form

x = Xolp) = —p?/B°. (8)

To explain why the Airy packet is the only one that does
‘not spread, we first note that a necessary condition for any
probability density to propagate unchanged in form is that
its semiclassical representation translates rigidly along x
as time elapses. This in turn requires that the curve P,(x)
or X,{p) representing the corresponding family of orbits
translates rigidly in phase space as time elapses. (If this
requirement were violated, that is if the curve were to rotate
or deform, the x dependence of the multipliers 325 /dx?
= dP/dx in {5) would alter, thus distorting the semiclassical
wave packet.) An initial point xg,pp moves according to
Hamilton’s equations by

x = xo + pot/m, P = Pos (?)

and this corresponds to simple shear of the phase space,
with points on the x axis remaining fixed. Under this de-
formation the curve Xo{p) changes to

x = X, (p) = Xo(p) + ptim. (10)

Now, only two curves translate rigidly under this defor-
mation. One is any straight line p = const, which corre-
sponds to the trivial case of the plane wave = exp(ipx/h).
The other is any parabola whose symmetry axis is paralle!
to the x axis, which according to (8) corresponds to the

—

Fig. 2. Family of orbits at ¢
»x = 0fills a parabola in the clas-
sical phase space.
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caustic :
Fig. 3. Parabolic caustic
enveloping straight world

= +(—B3x)/2, (7).

lines in force-free space
time.

Airy packet. Explicitly, the shifted parabola at time ¢ has
the equation

x — BYMY4m2 = —(p ~ 1BY2m)¥/B3.  (11)

The proof that no other curve translates rigidly can be easily
constructed by the interested reader by seeking curves
which transform into themselves under shifts a(¢) and b(¢)
in x and p, i.e., for which the substitutions

x = £ —alt), p=m—b(1), (12)
transform (10) into

£ = Xo(r). (13)

This completes the explanation of why the Airy packet re-
mains undistorted as it progresses,

Now we must understand how the Airy packet can ac-
celerate even though no force acts on the particles. First of
all, we remark that such acceleration does not contradict
Ehrenfest’s theorem,! according to which the center of
gravity of a packet in free space moves with constant speed.
The reason is that for the Airy packet the center of gravity
cannot be defined, because the Airy function is not square
integrable: it cannot represent the probability density for
a single particle, but corresponds to an infinite number of
particles, just like the plane wave and other wave functions
in scattering theory. In fact the greatest value of [|? lies
close to the place (Fig. 1) where the argument of the Airy
function (3) is zero, and according to equation (11) this
corresponds to the x value for which the moving parabola
has infinite slope, that is to the boundary of the classically
allowed region. This is what accelerates.

On a spacetime diagram (Fig. 3) it is very clear how the
classical boundary is the caustic {envelope) of the family
of trajectories. For in x, ¢ space the world lines of the tra-

"jectories (10) [with Xp(p) given by (8)] are straight lines

parameterised by p, and their envelope [obtained by elim-
inating p from (10) by differentiation] is just the parabola
x = 12B3/4m?, The acceleration of the classical boundary
is embodied in the curvature of the caustic, and it is per-
fectly obvious that a family of straight world lines can be
enveloped by a curved caustic. Further clarification of the
apparent conflict with Ehrenfest’s theorem is given in the
appendix.

III. MOTION OF AN AIRY PACKET IN A
TIME-VARYING SPATIALLY UNIFORM
FORCE

Now let the initial wave (1) evolve not in free space but
in a potential

Vix,t) = —F(t)x, (14)

M. Berryand N. Balazs 265



x
Ut Fig 4. Straight caustic enveloping par-

x  abolic world lines in the presence of a
constant force.

representing a force F(z). The solution of the corresponding
time-dependent Schrédinger equation is

Yix,t) = Ai khfﬁ(x B %
_ IIM)]EM(“)’ (15)
0

m

B B x B
o(xt) = (x 6m2)+hj;drF('r) YT

X j;r dr j;r dr' (27 = YF(7)

1 t T, , 2
- Ode; dfF(f)]. (16)

The correctness of this solution can be verified by substi-
tution. We actually found it in two different ways: (a) by
evaluating Feynman's path integral* for the propagator of
the Schrodinger equation, and then integrating over the
initial wave (1); and (b) solving the Schrédinger equation
in momentum representation using the method of charac-
teristics.

The result (15) shows that once again the probability
density |]2 of the Airy packet propagates without change
of form. lis center moves along the trajectory given by

3.2 !
xo(t) =%+-’%L drFHE-1. (7

We now examine the motion resulting from some special
forms of F(¢).
(i) The constant force

F(t)=—B32m (18)

gives xo(t) = 0, i.e., such a force is just sufficient to over-
come the “natural” tendency of the packet to accelerate.
This result reproduces the well-known fact that the Airy
function is a solution of the time-independent Schrédinger
equation in a linear potential. In geometric language, the
force causes the world lines on Fig. 3 to curve into parabolas,
which can now envelope a straight caustic parallel to the t
axis (Fig. 4), so that the classical boundary remains at
rest.

(ii) If an impulse is added to the constant force (18), i.e.,
if
F(1) = —B32m + mui(e), (19)

then
xpl1) = ut, (20)

i.e., the packet moves with constant speed u.
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(iii) If instead of an impulse a sinusoidally oscillating
force is added to.{18), i.c., if
F(t}y = —B3/2m + Fgcos(wt + o), 20

then

Fo [coswr — cos(wt + a) _ ¢ sinat

%ol = 20| = (22)

This causes the packet to oscillate, as expected, but the
oscillations are superimposed on a secular drift with velocity
— Fosina/wm. If a = 0 the packet oscillates not about xg
= 0 but about the point xo = Fg cosa/mw?2.

IV. DISCUSSION

We think the Airy packet is worth introducing into ele-
mentary quantum mechanics courses. Its unfamiliar
properties, apparently contradicting the subject’s folklore,
provide a nontrivial illustration of the fact that a wave
function corresponds to a family of orbits and not to a single
particle. The unique nonspreading property is easily related
to the unique shape of curve which is unaltered (apart from
translation) as the classical motion shears the phase space.
Moreover, the role played by the caustic shows dramatically
how features of wave functions can be dominated by forms
(envelopes of families of orbits, which can accelerate, even
in empty space) rather than things (individual particles,
which are constrained to move with constant velocity).
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APPENDIX

Any square-integrable function constructed from Airy
packets must obey Ehrenfest’s theorem. One such function
is the “eigendifferential” 3

B = ) ,
K50 = gy J o A €U,

(23)

where  is given by (3). x(x,#) is normalized to unity. If o
is small x is a superposition of Airy packets with a slight
spread in the orgin. The resulting spread in the oscillations
cancels by interference the oscillatory tail in ¥(x,¢) for in-
finitely negative x. By writing (23) as a Fourier integral it
is not hard to show that the centre of gravity of the eigen-
differential is at

Y A _ —h
{(x)= j‘_mdxx | x(x.0}{? = BT

This shows that  represents & physical situation in which
the mean location is independent of time, in accord with
Ehrenfest’s theorem for this case where no forces act. The
width of the eigendifferential is given by

R
2B6q4 m2h? |

(24)

o2
{(x ~ {x))?) =5+ (25)
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For small ¢ this is constant for long times, but eventually
the spreading due to the Gaussian cutoff takes over.
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