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Abstract

The wave function for the composite nucleus is written as a prop-
erly, antisymmetrized combination of partial wave functions, corre-
sponding to various possible ways of distributing the neutrons and
protons into various groups, such as alpha-particles, di-neutrons, etc.
The dependence of the total wave function on the intergroup separa-
tions is determined by the variation principle. The analysis is carried
out in detail for the case that the configurations considered contain
only two groups. Integral equations are derived for the functions of
separation. The associated Fredholm determinant completely deter-
mines the stable energy values of the system (Eq. (33)), Eq. (48)
connects the asymptotic behavior of an arbitrary particular solution
with that of solutions possessing a standard asymptotic form. With
its help, the Fredholm determinant also determines all scattering and
disintegration cross sections (Eqs. (50) . . . (54) and (57)), without the
necessity of actually obtaining the intergroup wave functions. The ex-
pressions (43) and (60) obtained for the cross sections, taking account
of spin effects, have general validity. Details of the application of the
method of resonating group structure to actual problems are discussed.

Introduction

Resonating group structure

A description1 of the nucleus which regards the neutrons and protons as
spending part of their time in configurations corresponding, for example,

1Cf. preceding paper, where Appendix I gives an example which illustrates the follow-
ing considerations. For a preliminary account of the present work, cf. Phys. Rev. 51, 683
(1937).
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to interacting alpha-particles, part of their time in other groupings, already
takes into account to a large extent that intimate interaction between nuclear
particles which is so entirely different from the situation in atomic structure,
where the concept of average field is a reasonable approximation. In contrast
to the Hartree-Fock procedure, the method of “resonating group structure”
builds up a wave function for the whole nucleus out of partial wave functions
which describe the close interaction within the individual groups. It is clear
that in this way we take advantage from the beginning of the saturation
character of nuclear binding, by which much the largest part of the energy
of the compound nucleus is accounted for by the internal binding of the
separate groups. On the other hand, the fact that the total wave function is
built of a properly antisymmetrized combination of partial wave functions,
corresponding to the various possible types of groupings, shows that we are
far from the picture which regards alpha-particles, .for example, as having
any real existence within the nucleus.

It is the purpose of this paper to derive the wave equation for resonating
group structures and to show how the interaction integrals can be evalu-
ated and how solutions can be obtained which give the positions of nuclear
energy levels and the cross sections for scattering and disintegration. We
start out by considering a system of m protons and n neutrons described
by the m + n = N coordinates2 x1, σ1; x2, σ2; . . .xm, σm; y1, τ1; . . .yn, τn,
(σ’s are proton spins, τ ’s are neutron spins) which we may abbreviate as
simply 1,2, . . . ,N. In the approximation given by the method mentioned,
the wave function Ψ of the whole system is written as the sum of parts, of
which a given term represents the N particles sorted into groups in a par-
ticular way (configuration). Such a term is the product of wave functions
Φ describing the motion of the particles within each group, multiplied by a
function F which depends on the positions, X, and spin variables, ms, of the
different groups (the word spin referring here to the total internal angular
momentum of a group). The various unknown functions F i belong to differ-
ent configurations-thus, for Li6, F1 might represent the relative motion of a
normal alpha-particle and a normal deuteron; F 2 might similarly represent
excited Li5 plus neutron, etc. The properly anti-symmetrized wave function

2In this paper, neutrons and protons are treated as different particles. Nothing essential
is changed, however, if one uses the formalism of the isotopic spin variable and treats
neutrons and protons as different states of one type of particle.
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for the whole system has the form3

Ψ(12 . . .N) = k1
I ! . . . l1I ! . . .m!n!)−1/2

×
∑

perm
(±1)

∑

m1

F 1(X1
I ,m

1
I ; X1

II,m
1
II; . . .).

Φ1
I ,mI(1,2, . . .kI

1;m+ 1,m+ 2, . . .m+ 11
I )

×Φ1
II,mII(k

1
I + 1, . . . ;m+ 11

I + 1, . . .) . . .

+(k2
I ! . . . l2I ! . . .m!n!)−1/2

∑

perm
(±1)

∑

m2

F 2(X1
I ,m

2
I ; . . .)Φ2

I ,mI(1,2, . . .k
2
I ; . . .) . . .

+terms in F 3, F 4, . . . F c.

(1)

The symbol
∑

perm(±1) indicates a summation perm running over all m!
permutations of the protons and n! permutations of the neutrons, with a
change in sign for odd permutations; the function Ψ as written is not nor-
malized but the numerical factors simplify the normalization.4 The X’s are
of the form

X1
I = x1 + x2 + . . .+ xkI + y1 + y2 + . . .+ ylI)/(kI + lI).

The subscript mII on Φ1
II singles out that particular wave function for group

II1 (possessing spin S′II) which represents the z component of its angular
momentum as having the value mII; the sum over the m’s is to give a
partial wave function Ψ1 corresponding to definite values of the angular
momentum of the whole system and its projection along the z axis (the
same, of course, for all Ψi’s). Group I of configuration 1 is not in general
the same as group I of configuration 2, etc. The Φ’s, among which there are,
for example, alpha-particle wave functions, are antisymmetric in neutrons
and in protons.5 Each Φ is normalized, and the Φ’s representing different

3The following is simplified on first reading by supposing that the groups have no spin,
as is the case for α-particles.

4The terms of the first sum are identical in sets of u1 = k1
I ! . . . l1I ! . . . at a time because

of the antisymmetry of the Φ’s; there are v1 = m!n!/k1
I ! . . . l1I ! . . . different distributions

of the neutrons and protons into the groupings I1, II2, etc.; if the different distributions
were orthogonal, the normalizing factor for the first sum would be exactly (v1)−1/2(u1)−1.

5When a group consists only of a single particle, Φ is simply a δ function.
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states of the same group are orthogonal; thus,

∑

σ1,σ2,τ8,τ9

∫
Φ∗α(1,2,8,9)× Φβ1,2,8,9dτ1,2,8,9 = δαβ , (2)

where by
∫
. . . dτ we mean here the integral with respect to any three inde-

pendent variables, keeping the center of gravity fixed:

dτ = d(x1,x2,y8,y9)/dX1289.

The Φ’s may depend explicitly on the X’s (“polarization”).

Outline of procedure

The problem centers on the calculation of the functions F i, which we
determine uniquely by the condition that they shall give the best possible
wave function of the form (1) in the sense of the variation principle :

δE = 0

(

E =

∫
Ψ∗HΨdτ/

∫
Ψ∗Ψdτ

)

. (3)

Our program is as follows: We express (Eq. (13))
∫

Ψ∗HΨdτ and
∫

Ψ∗Ψdτ
in terms of the F i and certain quantities representing the Hamiltonians of
the individual configurations and the interactions responsible for the reso-
nance of the nucleus between different configurations; then (specializing to
the case of only two groups in each configuration) we vary E in (2) sepa-
rately with respect to each of the c functions F i, and obtain from the vari-
ation principle c simultaneous integro-differential equations ((17) and (25))
on the F i; through the use of a generalized Green’s function we transform
these equations to integral equations (Eq. (30)) of a well-known type; the
condition that the Fredholm determinant of this set of equations shall vanish
is found to determine energy levels, and also, phase shifts and transmuta-
tion probabilities, without calculation of the F i themselves; finally, we go
into some details of the numerical calculation of the Fredholm determinants
encountered.

Integration over Internal Degrees of Freedom

Normalization integral

We have to express the integral
∫

Ψ∗Ψdτ and similar energy integrals
in terms of the F ’s. The contribution coming from Ψi∗Ψj reduces to the
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integral of

(kiI!k
i
II! . . . l

i
I!k

j
I ! . . . kjII! . . . l

j
I ! . . .)−1/2.

×
∑

mi
F i(Xi

I,m
i
I; X

i
II, . . .)

ΦImI
(1,2, . . .kiI; m + 1, . . .m + 1iI)

×Φi
IImiII

(kiI,+1, . . .kiI + kiII; m + 1iI + 1, . . .) . . .

∑

perm
(±1)

∑

mj
F j(Xj

I , . . .)Φ
j
ImI

(1, . . .kjI ; . . .) . . .

(4)

owing to the complete antisymmetry of the individual configuration wave
functions Ψi. Imagine aII protons to be withdrawn from the kiI in group I
of configuration i and placed in the group I of configuration j, aI II to be
removed from the same source to IIj , and so on; similarly we transfer bII
neutrons from Ii to Ij , etc. Then the set of numbers ars, btu describes a cer-
tain shifting of particles which may call the linkage {ab} from configuration
i to j. Clearly ∑

s
ars = kir;

∑

r
ars = k

j
s;

∑

u
btu = lit;

∑

t
btu = l

j
u.

(In the example following Eq. (26), for i = 1, j = 2, we have aII = aI II =
bII = bI II = 0, AI II = aII II = bII I = bII II = 1).

All aII!aI II! . . . bII!bI II! . . . terms in
∑

perm
which belong to the same linkage are identical; terms belonging to a dif-
ferent set of values of the a’s and b’s are different from these [unless there
are two or more group wave functions among either the Φi

ImiI
,ΦII,miII

, . . .

or the Φj

ImjI
, Φj

IImjII
, . . . , which are actually the same. When this situation

occurs, the same linkage will be said to include those sets of values of the
ars, biu which arise by permuting the subscripts of identical states of indi-
vidual groups in configuration i and by changing about the labels I, II, . . .
of those states Φj

ImjI
, Φj

IImjII
, . . . which are really the same. If λi and λj are,

respectively, the numbers of such permutations, which do not actually have
any effect on the distribution of particles into groups, then we introduce
1/λi and 1/λj as additional normalizing factors for the parts Ψi and Ψj of
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Ψ Eq. (1). Then the procedure goes through exactly as below, where we
explicitly assume that all groups are different, so as to avoid unessential
complications]. By defining numerical factors

g{ab} =
aII!aI II! . . . bII! . . .

[kiI! . . . lIi! . . . k
j
I ! . . .]1/2

,

we conveniently combine all terms belonging to the same linkage:

∫
Ψ∗Ψdτ =

∑

i,j

∑

mimj

∑

{ab}ij

g{ab}ij

×
∫
F i∗(Xi

I,m
i
I, . . .)Φ

i
ImiI

(1,2, . . .) . . .

×F j(Xj
I , . . .)Φ

j
Im

Ij
(. . .) . . . dτ.

(5)

When in (5) {ab}ij , is the identical linkage (aI I = kI, aI II = 0, etc.), then
the normalization and orthogonality of the Φ’s reduces the corresponding
terms in the sum to

δij
∑

mi

∫
F i∗(Xi

I,m
i
I, . . .)F

i(Xi
I,m

i
I, . . .)× d(Xi

I, . . .)/dA, (6)

where A represents the (vector) coordinate of the center of gravity and we
have used the identity

d(1, . . .kiI; m, . . .)

dXi
I

d(kiI + 1, . . .)

dXi
II

. . .

×
d(Xi

I,X
i
II, . . .)

dA
=
d(1, . . . ,N)

dA
.

(In general,
d{f1(xyz), f2(xyz), f4(xyz)}

dx
is denned

to be
∂(f1, f2, f3)
∂(x, y, z)

dydz.)

For all other linkages in the sum (5), the X’s, regarded as functions of the
neutron and proton coordinates, will not all be the same as the X’s. As it
is complicated to carry out the treatment from this stage on in detail in the
general case, we specialize now to the case that there are only two groups in
each of the c configurations. Then when |{ab}| is not the identical linkage,
clearly the vectors Xi

II−Xi
I = X{ab} and Xj

II−Xj
I = ξ{ab} are independent of

each other. We can therefore express the coordinates x1, . . .xm,y1, . . .yn in
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terms of A,X{ab}, ξ{ab}, and N−3 independent (vector) variables u4, . . .uN
by a linear substitution. The differential element dτ becomes.

∂(1, . . .N)

∂(A,X,ξ,u4, . . .uN )
dXdξdu4 . . . duN .

Since the u’s do not enter in the F ’s, and moreover we take the F ’s to be
independent6 it follows that the integral in which we are interested reduces
after integration over the u’s to the form

∑

mi,mj

∑

{ab}ij

∫ ∫
F i∗(X{ab}ij ;m

i
I,m

i
II)

×I{ab}ij (X{ab},m
i
I,m

i
II; ξ{ab},m

j
I ,m

j
II)

×F j(ξ{ab};m
j
I ,m

j
II)dX{ab}dξ{ab}.

(7)

We regard the functions F i(X,mI,mII) which are obtained when the two m’s
run over their allowed values (mi

I = −SiI , . . . , S
i
I−1, SiI ; etc.) as components

of a single spin vector Fi(X), and similarly consider the quantities I in Eq.
(7) as components of a spin matrix I{ab}ij (X,ξ). The X’s and ξ’s in the sum
of integrals in Eq. (7) are dummy variables in the sense that they drop out
of the integrated answer. Consequently, in spite of their different physical
origin, we sum the spin matrices I{ab}ij ; over all the different linkages joining
the given configurations i and j (except the identical linkage), and denote
the result as Iij(boldsymbolX, ξ) (“overlapping integral”). On using a dot
to indicate the inner product of spin vectors, we have finally

∫
Ψ∗Ψdτ =

c∑

i=1

∫
F∗i (X) · Fi(X)dX

+
c∑

i,j

∫ ∫
F∗i (X) · Iij(X, ξ) · Fj(ξ)dXdξ,

(8)

where the I’s are in principle known functions of X and ξ the form of the
dependence being determined by the nature of the group wave functions Φ.

Kinetic and potential energy integrals

The calculation of the kinetic energy follows the preceding division into
the cases of identical and nonidentical linkages. In the first case we express

6It being most convenient to calculate cross sections in the frame of reference in which
the center of gravity is at rest: P = 0 in the factor exp(iPA/~) of F .
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the kI,x’s and lI,y’s of the particles of the first group in terms of A,X
and additional variables v2,v3, . . .vkI+lI by a linear orthogonal substitution,
and similarly put in the coordinates of the particles of the second group as
functions of A,X,w2,w3, . . .wkII+lII . Then

∂

∂x1
=

1

N

∂

∂A
−

1

kI+lI

∂

∂X
+
∂v2

∂x1

∂

∂v2
+ . . . ,

and the kinetic energy operator becomes

T = (~2/2M){N−1∇A ·∇A

+[(kI + lI)
−1 + (kII + lII)

−1∇X ·∇X

+
∑

α
cα∇vα ·∇vα +

∑

α
dα∇wα ·∇wα},

(9)

where the cα and dα, are numbers depending on the choice of the v’s and
w’s and the first and second gradients in each pair act on F∗i (X)Φi∗

I Φi∗
II and

Fj(X)Φj
I Φj

II, respectively. In terms of the reduced mass µi = µj of the two
groups, the kinetic energy integral for the identical linkage reduces to an
expression of the form

δij(~2/2µi)
∫
∇XFi∗(X) ·∇XF i(X)dX +

∫
F∗i (X) ·TijFJ(X)dX, (10)

provided either that we do not allow the Φ’s to depend on X (no explicit
polarization effects) or that we do not have in Ψ any configurations differing
only by the internal state of excitation of the individual groups. [In the latter
case, where the Φ’s may involve X as well as the u’s and v’s, we arrange
that no terms occur in (10) which arise from derivatives of the type (∇XF∗) ·∫

Φi∗
I ∇XΦj

I )dvF, by suitably choosing the arbitrary multiplicative functions
exp (if (X)) left free by the normalization and orthogonality conditions on
the Φ’s. There will however be terms typified by ∇XΦi∗

I ·∇XΦj
I which are

included in Tij(X) along with the contributions of the proper internal kinetic
energy operator (~2/2M)

∑
αcα
∇vα ·∇vα of group I.] It is quite natural that

there should be this exclusive relation between treatment by excited states
and by explicit polarization of the groups, for the two are to a large extent
equivalent methods of describing the same phenomenon.

Kinetic energy terms belonging to nonidentical linkages are re-
ducible to expressions containing the F ’s alone by use of the variables
A, X{ab}, ξ{ab},u4, . . .uN introduced above. The transformation is not in
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general orthogonal and consequently the kinetic energy operator (center of
gravity at rest) becomes the linear combination of operators of the form

∇X ·∇X, ∇X ·∇ξ, ∇X ·∇uα , ∇uα∇uβ .

The first gradient in each pair acts on F∗i (X)Φi∗
I Φi∗

II , the second on

Fj(ξ)Φj
iΦ

j
II. From ∇X ·∇X originate the terms

[∇XF∗i (X)]Φi
IΦ

i
IIFj(ξ)[∇XΦj

I Φj
I ]

and Fi(X)[∇XΦi
IΦ

i
II]Fj(ξ)[∇XΦj

I Φj
II].

By partial integration of the first term with respect to X, and use of the
boundary condition7 that Fi(X) must vanish at infinity, we transform the
first term to one where Fi and Fj appear undifferentiated. Continuing in
this way with all the operators above, and then introducing new variables
X, ξ, u to treat the next linkage, etc., we obtain finally the kinetic energy
integral for all nonidentical linkages in the form

∑

i,j

∫
F∗i (X) ·Tij(X, ξ) · Fj(ξ)dXdξ. (11)

The remaining terms in the integral
∫

Ψ∗HΨdτ come from the potential
energy. If the forces between the elementary particles were ordinary inter-
actions, the above analysis of the linkages would be valid, but the presence
of exchange potentials will change some of the identical linkages to noniden-
tical linkages, and vice versa. Nevertheless, for each term there will be a
suitable transformation of variables, either of the type A, X, v, w or of the
type A,X,ξ,u which will finally reduce the total potential energy to the
form

∑

i,j

∫
F∗i (X) ·Uij(X) ·Fj(X)dX +

∑

ij

∫ ∫
F∗i (X) ·Uij(X, ξ) ·Fj(ξ)dXdξ,

(12)
regardless of the type of the forces.8

7Only in the derivation do we make this restriction, which would, for the continuous
spectrum, require us to deal always with a finite if small energy spread in the wave-
function (which is of course physically correct), but in the actual calculations with the
integro-differential equation below it is permissible to deal in the usual way with sharp
energy values and waves which extend to infinity.

8They may be many-body interactions, for example.
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For large values of X and ξ it follows from the finite extension of the
individual group wave functions Φ that the Uij(X, ξ) and Tij(X, ξ) tend to
zero. At the same time, owing to the normalization and orthogonality of the
Φ’s, Uij(X) + Tij(X) approaches δij times Ei, the energy attributable to
the internal binding of the separated groups of configuration i. We therefore
write Uij(X + Tij(X) = Eiδij + Vij(X) and also combine the interchange
integrals:

Uij(X, ξ) + Tij(X, ξ) = Jij(X, ξ).

Summarizing the above considerations, we find that in the approxima-
tion given by the method of resonating group structure, the energy of the
compound system is

E = N/D,

where
N =

∑

i

(~2/2µi)
∫
∇XF∗i (X) · Fi(X)dX

+
∑

i

Ei
∫

F∗i (X) · Fi(X)dX

+
∑

i,j

∫
F∗i (X) ·Vij(X) · Fj(X)dX

+
∑

i,j

∫ ∫
F∗i (X) · Jij(Xξ) · Fj(ξ)dXdξ,

and

D =
∑

i

F∗i (X) · Fi(X)dX +
∑

i,j

∫ ∫
F∗i · Iij(Xξ) · Fj(ξ)dXdξ. (13)

The Wave Equation

Application of variation principle

It is known9 that the Schroedinger wave equation may be derived from the
variation principle δE = 0, and that any improvement in an approximate
wave function lowers the corresponding value of the energy.

9E. Schroedinger, Ann. d. Physik 79, 362 (1926); cf. also R. Courant and D. Hilbert,
Methoden der Mathematischen Physik I, second edition (Berlin, 1931), p. 159.
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We therefore determine the unknown functions F by the condition that
they shall give the best possible total wave function Ψ of the form (1) in the
sense of the variation principle

δE = δN/D) = 0. (14)

The variation in N caused by a change δFiδ(X−X0) in the value of Fi(X)
at the point X0 is found by partial integration to be10 2δFi times

−(~2/2µi)∇x
2Fi(X)+EiFi(X)+

∑

i

Vij(X)·Fj(X)+
∑

i

∫
Jij(Xξ)·Fj(ξ)dξ

(15)
evaluated at X = X0. Similarly, the change in D is 2δFi times

Fi(X) +
∑

j

∫
Iij(X, ξ) · Fj(ξ)dξ. (16)

E is stationary with respect to all variations of the F’s only if the ratio
δN/δD is the same as N/D = E for all values of X0 and all values of i,
whence we have the system of simultaneous linear integro-differential equa-
tions

[(~2/2µi)∇X2 + E − Ei]Fi()

=
∑

j

[
Vij(X) · Fj(X) +

∫
{Jij(X, ξ)− EIij(X, ξ)} · Fj(ξ)dξ

]
.

(17)

If the right member of (17) were zero, the solution of our equations would
give simply the free relative motion of the different groups of a given config-
uration; the terms with j = ion the right determine the interaction between
these groups, and the nondiagonal terms take into account the resonance
between different configurations-in particular, the possibility of transmuta-
tions. From the fact that the energy of the system is always real we have11

Vij(X) = V∗ij(X), Jij(X, ξ) = J∗ij = J∗ij(ξ,X),

Iij(X, ξ) = I∗ij(ξ,X).
(18)

10We carry out the derivation as if the F’s, V’s, J’s, and I’s were all real; the result
is however true in general. Cf. W. Heisenberg, The Physical Principles of the Quantum
Theory (Chicago, 1930), p. 163.

11The star of a spin matrix indicates here its conjugate transposed.
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Angular dependence

Owing to the intimate interaction which occurs in the compound nucleus,
neither the internal angular momenta of the groups nor their mutual angular
momentum L will be constant, but only the total angular momentum J

and its projection mJ along a fixed space axis. We build up an eigenstate
for a given J and mJ in two steps: SI, SII → S;S,L → J . To form a
wave function corresponding to a particular value of the total internal group
angular momentum, S, we have to take a definite12 linear combination of
the sets of states belonging to SI and SII:

Φi
S,mS

=
∑

mI(mII)

{Si, SII , S
i
II;mS ,mI,mII} × Φi

ImI
,Φi

IImII
. (19)

The coefficients { } are pure numbers; they vanish unless mII −mS −mI,
for which reason mII is put in parenthesis in the sum.

We combine the Φ’s for a given S with functions belonging to a defi-
nite state of relative angular momentum L (and projection m) of the two
groups and express the separation vector X in polar coordinates r, θ, ϕ. The
function

(1/r)fJ(i, L, S, r)
∑

m(mS

{JLS;mJmmS} × Y
(m)
L (θ;ϕ)Φi

SmS
(20)

belongs to a given value of the total angular momentum J and its projection
mJ , and FiX)Φi

IΦ
i
II will be made up of the sum of such functions over all

values of L and S which are consistent with SI, SII, and J according to the
vector rule of addition of angular momenta. Consequently, for the given J

and mJ the mI,mII component of the spin vector Fi, is

f i(X,mI,mII) =
∑

L,S(m),(mS)

(1/r)fJ(iLSr)

×{JLS;mJ ,mmS}Y
(m)
L (θ, ϕ)× {SSI;mS ,mI,mII}

(21)

with suitably chosen fJ .

12Cf. E. Wigner, Gruppentheorie, Eqs. (18a) and (27). (Braunschweig, 1931), p. 206.
It is supposed that the normalizing constants in the Φ’s are chosen with the proper sign.
Three choices of sign for the related spherical harmonics Y

(m)
L are given in the literature;

for that consistent with (19), and for tables of the { }, cf. Condon and Shortley, The
Theory of Atomic Spectra (Cambridge, 1935), p.52, p. 75.
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Clearly the left member of the ith integro-differeritial Eq. (17) will have
the same form as (21) except that the fJ(iLSr) will appear operated on by

(1/r)[(~2/2µi)((d
2/dr2)− L(L+ 1)/r2) + E − Ei]. (22)

We now multiply this number by rY
(m)∗
L (θ, ϕ)×sin θdθdϕ{SSISII;mSmImII}

integrate over θ and ϕ, sum over mI and mII, make use of the orthogonality
and normalization of the spherical harmonics and the relation13

∑
mI(mII{SSISII;mSmImII} × {S

′SISII;mSmImII} = δSS′ , (23)

and end up with a single one of the fJ iLSr) on the left-hand side of the
integro-differential equation. The right-hand member of this equation will,
in general, contain radial functions fJ(jL′S′r) from all configurations and
from values of L′ and S′ not necessarily the same as L and S. We can
say at once from the invariance of the nuclear wave equation with respect
to space rotations: firstly, that J and mJ have the same value on both
sides of the equation; and secondly, that the equation for fJ(iLSr) must be
independent of mJ–i.e., the right-hand side of the equation must contain as a
factor the same expression {LJS;mJmmS} which appears on the left. (This
could of course be proven with more difficulty directly from the expressions
for Vij ,Jij , Iij). On introducing ρ, σ, τ for polar coordinates of ξ (like the
polar coordinates r, θ, ϕ of X and defining the Jth components of V,J (and
similarly Ias follows:

{JLS;mJmmS}YJ(iLS; jL′S′; r) =
∫
∼ θdθdϕ

∑

mI(mII)

∑

mI′ (mII′

Y
(m)∗(θ,ϕ
L

×{SSiIS
i
II;mSmImII}Vij(X;mImII;m

′
Im
′
II)

×{JL′S′;mJm
′m′S}Y

(m′)(θ,ϕ)
L′ × {S′SjIS

j
II;m

′
Sm
′
Im
′
II};

{JLS;mJmmS}JJ(iLSr; jL′S′ρ)

= rρ
∫ ∫

sin θdθϕ sinσdσdτ
∑∑

. . .× Jij(XmImII; ξm
′
Im
′
II) . . . ,

(24)
we obtain the radial wave equations of the method of resonating group

13Wigner, reference 11, Eq. (28), p. 206.
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structure:

[(~2/2µi)(d
2/dr2 − L(L+ 1)/r2) + E − Ei]fJ(iLSr)

=
∑

jL′S′

∫
HJ(iLSr; jL′S′ρ)fJ(jL′S′ρ)dρ = gJ(iLSr),

(25)

where gJ(iLSr) is an abbreviation for

∑

jL′S′
{VJ(iLS; jL′S′; r)fJ(jL′S′r)

+
∫

[JJ − EIJ(iLSr; jL′S′ρ)]fJ iL
′S′ρ)dρ}.

(26)

Integral Equations

Reduction of integro-differential equations

In the radial integro-differential equations (25), we write

(2µi/~
2)(E − Ei) = −κ2

i for E < Ei configuration i stable,

(2µi/~
2)(E − Ei) = k2

i for E > Ei (dissociation possible). (27)

We have the following cases to consider :
(A) All Ei > E. Completely stable nucleus. Sharp energy values.
(B) Only one Ei < E. Elastic collisions between groups Ii and II ′; lifetime of

compound nucleus determined by probability of a single mode of dissociation.
(C) More than one Ei < E. Elastic scattering; also transmutation processes

Ii + IIi ⇔ Ij
′
+ IIj .

As illustration, Table I gives the configurations which may be used to describe
the compound nucleus 2He4:

TABLE I. Configuration of 2He4

i Ii SiI IIi SiIIEimMU)
1 H1 1/2H2 1/2-9.1
2 n1 1/2 He2 1/2-8.1
3 H2 1 H2 1 -4.8

14



In case A (stable 2He2) the radial functions f must fall off exponentially for large r
for all configurations; in addition, the f ’s must satisfy the usual boundary condition
f(0) = 0 at the origin. On considering the right hand members of (25) to be known
functions14 of r, we can immediately obtain expressions for the f satisfyng the
proper boundary conditions. We introduce the “regular” and “irregular” solutions
of the homogeneous equation

[d2/dr2 − κ2 − L(L+ 1)/r2]f = 0 (28)

as follows:

ρ = κr; FL(ρ) = ρL+1

(
1

ρ

d

dρ

)L
(ρ−1 sinhρ)

= {ρL+1/1 · 3 . . . (2L+ 1)}{1 + ρ2/2(2L+ 3) + . . .};

GL(ρ) = (−1)LρL+1

(
1

ρ

d

dρ

)L
(ρ−1exp(−ρ)) ∼ e−ρ;

dFL

dρ
GL − FL

dGL

dρ
= 1; (28a)

and for later use write down also the regular and irregular solutions of the equation
obtained replacing −κ2 in (27) by k2:

ρ = kr; FL(ρ) = (−1)LρL+1

(
1

ρ

d

dρ

)L
(ρ−1 sin ρ)

= {ρL+1/1 · 3 . . . (2L+ 1)}{1− ρ2/2(2L+ 3) + . . .} ∼ sin(ρ− Lπ/2);

GL(ρ) = (−1)LρL+1

(
1

ρ

d

dρ

)l
(ρ−1 cos ρ) ∼ cos(ρ− Lπ/2);

dFL

dρ
GL − FL

dHL

dρ
= 1. (28b)

The uniquely determined solution of the inhomogeneous equation is

fJ(iLSr) = −(2µi/~κi)

{
r∫

0

FLκiσ)GL(κir)

+
∞∫

r

FL(κir)GL(κiσ)

}

g(iLSσ)dσ.

(29)

As the g’s are however given in terms of the f ’s, we have cross relations which
will not in general be consistent with each other-except for those special values of

14Cf. Mottand Massey, The Theory of Atomic Collisions (Oxford, 1933), p. 151, for an
analogous method of conversion to an integral equation.
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E which represent stable levels of the compound system. We write out (29) as a
system of linear integral equations on the f ’s:

fJ(iLSr) +
∑

j,L′S′

∞∫

0

SL(iLSr; jL′S′ρ)

×fJ(jL′S′ρ)dρ = 0,

(30)

where the kernel SJ is given by

SJ(iLSr; jL′S′ρ) = (2µi/~2κ− i)

×

{
r∫

0

GL(κir)FL(κiσ) +
∞∫

r

FL(κir)GL(κiσ)

}

×HJ (iLSσ; jL′S′ρ)dσ,

(31)

and is therefore in principle known as soon as the V’s, J’s and I’s have been evalu-
ated. We know from the theory15 of integral equations that (30) has a characteristic
solution only when the Fredholm determinant of the equation vanishes:

D(E) = |δiδLL′δSS′δ(r − ρ) + SJ(iLSr; jL′S′ρ;E) = 0. (32)

Eq. (32) determines the stable levels of the system. In diagonal expansion, it runs

D(E) = 1 +
∑

iLS

∫
(iLSr; iLSr)dr + (1/2!)

∑

iLS

∑

jL′S′

∫ ∫ ∣∣
∣
∣
∣
S(iLLr); iLSr) S(iLSr; jL′S′ρ)
S(jL′S′ρ; iLSr) S(jL′S′ρ; jL′S′ρ)

∣
∣
∣
∣
∣
drdρ+ . . . = 0, (33)

where for brevity the suffix J and the argument E have been omitted from S.

Elastic Scattering

The collision of H1 and H3 with energy too small to form n′+ He3 comes under case
B. For every given E, Eqs. (25) will now possess a solution. The wave functions for
configurations 2 and 3 must still fall off exponentially for large r, but the f(1LSr),
which also satisfy the boundary condition at the origin, behave asymptotically for
large r as combinations of sin(k1r) and cos (k1r).

16

15Lovitt, Linear Integral Equations (New York, 1924), p. 41.
16Provided we assume any coulomb fields to be broken off beyond some suitable distance

r. The question of the most convenient procedure in this connection is discussed in more
detail below.
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A proton and triton without spin would be described at large distances by one
function fJ(1J0r). If this function is so normalized that that part of it which corre-
sponds to the incoming wave e−i(k1−Jπ) has amplitude −(l/2i), then the amplitude
of the outgoing wave eik1r must have the same absolute value and may be written
(1/2i)e2iKJ . Here KJ is the so-called “phase shift,” which is completely determined
(up to ±nπ) by the collision energy and form of the interaction, and which in turn,
along with the other KJ ’s, determines the differential cross section σII(θ) for elastic
scattering through the well known formula17

σII(θ) = (4k2
1)−1 × |

∞∑

L=0

(2L+ 1)(e2iKL − 1)PL(cos θ)|2. (34)

Effect of spin

The specific dynamic18 action of nuclear spin splits up an incoming wave

−(1/2i)exp[−i(k1r − Lπ)],

containing two groups in one state JLS of specified spin orientation and given mu-
tual angular momentum, into a number of outgoing waves representing these groups
separating with altered spin orientations and changed mutual angular momentum.
The particular solution fL, S associated with the given initial conditions is a set of
functions, gJ in number, having the asymptotic form:

fLSJ (1LSr) ∼ −(1/2i)exp[−i(k1r − Lπ)]

+(1/2i)cJ (LS;LS)exp[ik1r],

fLSJ (1L′S′r) ∼ (1/2i)cJ (L′S′;LS)exp[ik1r]
(L′, S′ 6= L, S).

(35)

Another particular solution is obtained by letting the groups approach in a different
initial state JL̃S̃; altogether there are gJ such independent particular solutions for
a given value of J. We therefore need gJ2 complex numbers cJ(L′S;LS) to char-
acterize completely the behavior at infinity of the independent solutions associated
with a given component HJ of the interaction operator. For these large distances
the waves associated with the stable configurations 2, 3, . . . have fallen to zero, and
the total wave function for a state described by the quantum numbers J,mJ , L, S

17Mott and Massey, reference 13, p. 24.
18The statistical effect of the spin in a problem where two groups are identical (Mott,

Proc. Roy: Soc. A126, 259 (1930)) is already taken into account in our treatment before
the wave equation is reduced to radial form.
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is obtained from

χLSJmJ (1,2, . . .N) =
∑

L′S′
(1/kr)fLSJ (1L′S′r)

∑

mS′(m′)

{JL′S′;MJm
′m′S}Y

(m′)
L′ (θ, ϕ)Φ1

S′,mS′

(36)

by antisymmetrizing according to the procedure discussed earlier. However, in
deriving the scattering cross section, as in the next paragraph, we are justified
in dealing with the unsymmetrized χ’s because: (1), the fJ are solutions of wave
equations in which the HJ ’s already include all dynamical effects of symmetrization
(exchange interactions); and (2), those scattered waves in the total wave function
which come from χ’s differing by an interchange of particles between the constituent
groups cannot interfere with each other at distances large in comparison with the
size of the groups.

We consider a state typified by

exp(ik1z)Φ1
S,mS

+ scattered waves. (37)

The proper linear combination of the χJmJLS required to give this state is found
most easily by comparing the coefficients of exp[−i(k1r − Lπ)] in the asymptotic
expansions of the χ’s and the advancing plane wave

exp(ik1z) ∼
∑

L

(2L+ 1)PL(cos θ)(1/2ikr)× [−e−i(k1r−Lπ) + eik1r]. (38)

For the comparison we use Eqs. (19) and (36). We find by application of the
orthogonality relation19

∑

J

{JLS;mJmmS}{JLS;mJm
′m′S} = δ′mmδmSmS′ (39)

and the equations of definition,

Y
(m)
L (θ) = Θ

(m)
L (2π)−1/2eimϕ,

Θ
(0)
L (θ) = (L+ 1/2)1/2PL(cos θ),

(40)

that the desired coefficient of χLSJmJ is

{JLS;mS 0 mS}δmsmJ [4π(2L+ 1)]1/2. (41)

The difference between the resultant linear superposition of solutions and the ad-

19Wigner, reference 11, Eq. (28).
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vancing plane wave is the scattered wave

(eok1r/2ik1r)
∑

L

[4π(2L+ 1)]1/2

×{
∑

JL′S′

∑

mS′(m′)

cJ(L′S′;LS){JLS;mS 0 mS}

×{JL′S′;mSm
′m′S}Y

(m′)
L′ (θ, ϕ)Φ1

S′mS′

−Y (0)
L (θ, ϕ)Φ1

SmS
}.

(42)

We square the absolute value of the coefficient of (eik1r/rΦ1
S′mS′ and thus get the

differential cross section for the process: groups in spin state Φ1
S,mS

collide and

go off in the direction θ, ϕ in the spin state Φ1
S′mS′

. The observable collision cross

section, per unit solid angle, is obtained by averaging this over all (2SI +1)(2SII +1)
initial modes of orientation and summing over all possible final values S′m′S

:

σII(θ) = [(2SI + 1)(2SII + 1)4k2
1]−1

∑

S,mS

∑

S′mS′

|
∑

L

{
∑

JL′
cJ(L′S′;LS){JLS;mS0mS}

×{JL′S′;mS ,mS −mS′ ,mS′}(4L2)1/2

×Θ
(mS−mS′ )
L′ (θ)− δSS′δmSmS′ (2L+ 1)PL(cos θ}|2.

(43)

Determination of scattering matrix

Our next steps are based on the hope that all the desired quantities cJ(L′S′;LS)
(for a fixed J) can be obtained by consideration of a single generalized Fredholm
determinant, without the necessity of actually constructing and investigat- ing ex-
plicitly the asymptotic behavior of the solutions fLSj (1L′S′r). We observe first of
all that the transition from a set of integro-differential equations to a set of integral
equations goes through as in the case of stable energy levels (Eq. (25) to Eq. (30)),
since the two independent zero field solutions for positive energies (28b) have that
same relation to their derivatives which made possible the building up of a Green’s
function in the earlier case. Only now the integral equations (30) are not unique, for
the combination GL(k1r) + [ctgK]FL(k1r), as well as GL itself, satisfies (28b), and
both are equally satisfactory in their asymptotic behavior for large r. Consequently,
the kernel of (30) not only depends on the energy but in general also contains gJ
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undetermined “phase shifts” KJ(LS):

SJ(iLSr; jL′S′ρ) = (2µi/~2ki)

{
r∫

0

GL(kir)FL(kiσ) +
∞∫

r

FL(kir)GL(kiσ)

+[ctgKJ(iLS)]
∞∫

0

FL(kir)FL(kiσ)

}

×Hj(iLSσ; jL′S′ρ)dσ.

(44)

In this expression, the F ’s and G’s represent the positive energy zero field solutions
(28b) when E−Ei is positive (i.e., for configuration 1); but when E−Ei is negative
(configurations 2, 3, . . .), we understand ki to be replaced by κi, (Eq. (26)), and F ’s
and G’s to be the negative energy solutions (28a), and the ctgKJ(iLS) to be put
equal to zero. We next remark that for any given energy the Fredholm determinant

D(E;KJ(1 . . .), . . . ,KJ(1LS), . . .

= |δ(iLSr; jL′S′ρ) + S(iLSr; jL′S′ρ)|
(45)

can be made to vanish, because we now have the K’s free to adjust, in contrast
to the situation in the case of stable energy values. The equation D(E,K) = 0
determines a gL − 1 dimensional surface in the gJ dimensional space of the K’s.
Every point on this surface corresponds to a particular solution for the radial wave
functions fJ(iLSr). This solution must be a linear combination with certain (com-
plex) coefficients aLSJ of the gJ particular solutions fLSJ (iLSr) defined by Eq. (35).
By comparison of the asymptotic behavior of the superposition of states,

∑

L,S

aLSJ fLSJ (iL′S′r) ∼ −(1/2i)δi1a
L′S′

J

×exp[−i(k1r − Lπ)] + (1/2i)δi1exp[ik1r]

∑

LS

cJ(L′S′;LS)aLSJ ,

(46)

with that of the solution of the integral equations (30) belonging to the kernel (44),

fJ(iL′S′r) asymptotically proportional to

δi1{GL′(k1r) + [ctgKJ(1L′S′)]FL′(k1r)}

or to δi1 {−(1/2i)exp[−i(k1r − Lπ)]

+(1/2i)exp[ik1r]
ictgK − 1
ictgK + 1

}
,

(47)
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we find ∑

L′,S′

cJ(LS;L′S′)aL
′S′

J = exp[2iKJ(1LS)]aLSJ (48)

as the equations of connection between the coefficients aLSJ and the points on the
gJ − 1 dimensional surface in the space of the K’s. It is seen that the constants c
completely define the surface in question. The c’s form a unitary matrix, for the
equality which must exist between the numbers of incoming and outgoing groups
in the state (46) for arbitrary choice of the a’s,

k1

∑

LS

|aLSJ |
2 = k1

∑

LS

|
∑

L”S′

cJ(LS;L′S′)aL
′S′

J |2 (49)

is just the necessary and sufficient condition20 for unitary character.
Our problem is: To determine the unitary scattering matrix ||cmn|| (we abbre-

viate by using m = 1, 2, . . . , g to indicate the possible values of the pair L, S), being
given: (1), the surface

D(K1, . . .Kg) = 0 (50)

(from the Fredholm determinant of the integral equation); and (2), the equations

g∑

α=1

cmαaα = e2iKmam (m = 1, 2, . . . g) (51)

(which we have seen to be an equivalent way of representing the surface). We first
eliminate the a’s by the condition that Eqs. (51) possess a solution:

∣
∣
∣
∣
∣

c11 − e2iK1 c12 . . . c1g
c21 c22 − e2iK2 . . . c2g
. . . . . . . . . . . .
cg1 cg2 . . . cgg − e2iKg

∣
∣
∣
∣
∣

(52)

Eq. (52) is a condition on the c’s which must be satisfied at every point K =
(K1,K2, . . . ,Kg) on the surface D(K) = 0. In the actual applications the question
of procedure depends upon whether the Fredholm determinant is available only by
numerical calculations for each particular set of values of the K’s, or whether an
analytic expression is obtainable for D. In the first case it is desirable for simplicity
in the computations to restrict the K’s to real values, which, however, are not the
most convenient in solving (52) for the c’s. In the second case, where we have an
analytic expression for D, it is simplest to consider first those points on the surface
which are defined by ctgK = i for all K’s except a particular Km. The (complex)
value of Km = K ′m is then fixed by D(K) = 0, and from (52) we have at once
cmm = e2iKm′ . In this way we find all diagonal elements of the unitary matrix.
Next we let two K’s at a time vary freely, determining all other K’s by ctgK = i.
Again we use (52) and find

cmncnm = (cmm − e
2iKm)(cnn − e

2iKn), (53)

20A. Wintner, Spektraltheorie der Unendlicher Malrisen (Leipzig, 1929), p. 34.
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or in the limiting case ctgKn → i, where we can neglect cnn in comparison with
e2iKn ,

cmncnm → [e2iKm′ − e2i(Km′+5Km)]
1− i(i+ δctgKn

1 + i(i+ δctgKn)
;

that is,

cmncnm = −4cmm
∂Km

∂(ctgKn)

= 4cmm

[
∂Dm

∂(ctgKn)
/
∂D

∂Km

]

ctgKn=i

(m′ 6= m). (54)

If D(K1, . . . ,Kg) reduces to the product of two functions D′(K1, . . . ,Kα) and
D′′(Kα+1, . . .Kg), then the matrix ||cmn|| breaks down to two square blocks along
the diagonal, for from (54) and the unitary nature of c it follows that all elements
cmn connecting the one set of K’s with the other must be zero.

There is more than one21 set of values for the c’s satisfying Eq. (52) for all
points on the given surface: for example, the substitution uik = cki in general gives
a new unitary matrix which is an equally good solution. Two matrices c and u both
satisfy (52) only if the chain conditions

uii = ci,

uijuji = cijcji, (55a)

uijujkuki + uikukjuji = cijcikcki + cikckjcji, etc.,

are fulfilled for all values of the indices.
We suppose now that no off-diagonal elements vanish (trivial modifications

ensue in the following if some are zero). We write the second chain condition, for
i = l, in the form

u1j = ϕ−1
1 c1jϕj ,

uj1 = ϕ−1
j cj1ϕ1[= (ϕ1c11/c11c1j(ϕjc1j/c

−1
j1 ], (55b)

where the quantity ϕ1 is arbitrary and may be put equal to unity. Insetting (55b)
in the third chhain condition, with i = 1, and using ujkukj = cjkckj , that there
exist only two possible values for ujk:

ujk = ϕ−1
j cjkϕk, (55c)

ujk = (ϕjc1j/cj1)−1ckj(ϕkc1k/ck1).

Similar solutions exist for uk1, etc. Using the third chain condition in its general
form, and recalling that the ϕ’s are arbitrary, we find that if, ujk is given by (55c),
then all other u’s are given by the corresponding solution; and similarly for the
second solution. In matrix language: If d is an arbitrary diagonal matrix with. the,

21I am indebted to Professor H. Weyl and Professor j; H. M. Wedderbum for discussions
of the arbitrariness in the c’s.
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general diagonal element djj = ϕj or djj = ϕjc1j/cj1, then the most general matrix
u consistent with (52) is given by either

u = d−1cd or u = d−1c′d. (55e)

We still have the information that u, as well as c and c′, is unitary, whence

∑

j

|cij |
2{|ϕj |

2 − |ϕi|
2} = 0 (i = 1, 2, . . . , g).

With cij 6= 0 for all i 6= j (cf. remark above), it follows by simple algebra that all
|ϕj |2 must be equal; and since ϕ1 = 1, we conclude that our diagonal matrix must be
a phase matrix: djj = ϕi = eiθj . Therefore, given the Fredholm determinant (51),
we can determine the scattering matrix ||cmn|| uniquely up to a transformation by
an arbitrary phase matrix and a possible interchange of rows and columns. In the
trivial special cases mentioned above, where the off-diagonal elements of c vanish in
such a way as to allow the scattering matrix to be broken up into submatrices, each
block can have rows and columns interchanged independently of the other blocks.

When the conditions are satisfied for the time reversal of nuclear processes
(absence of external magnetic fields, etc.), the matrix c shows a certain symmetry
property equivalent to the principle of microscopic reversibility. The operation of
time reversal,22 in fact, converts a given wave function Ψ into a new one, KΨ:

KΨ = (x1, σ1, . . . ,xm, σm,y1, τ1, . . . ,yn, τn)
= s1x . . . smxt1x . . . tnxΨ∗(x1, σ1, . . . ,yn, τn)
= (−i)m+nσ1 . . . σmτ1 . . . τnΨ∗(x1, σ1, . . . ,yn, τn),

which, under the conditions stated, will be a linear combination of the old wave
functions. We go back to (46), put aLSJ = ~cJ(L′S′;LS), and obtain then solutions
whose radial parts have the asymptotic behavior

fJ(iLSr) ∼ ~cJ(L′S′;LS)(1/2i)

×exp[−i(k1r − Lπ)]

+(1/2i)exp[ik1r]δLL′δS′S . (56a)

The corresponding total wave function, after being operated on by the time reversal
operator K, will also be a solution of the wave equation in the absence of exter-
nal magnetic fields, etc., under which conditions we may suppose that the group
functions satisfy

i2mKΦm = Φ−m (56b)

(cf. Wigner’s Eq. (21)). Then, using the relation23

{JLS;mjmLmS} = (−1)−J−L−S × {JLS;−mJ ,−mL,−ms}, (56c)

22Cf. E. Winner, Göttingen Nachrichten 31, 546 (1932), Eq. (10).
23This relation was suggested by Professor Wigner, who has also been kind enough to

clear up several points in connection with Eqs. (55e) and (57).
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and referring to Eqs. (19) and (20), we have for the radial components of the new
wave function

fnew
J iLSr) ∼ (−1)J−SI − SII(−i)

2mJ

×{−(1/2i)δL′LδS′Sexp[−i(k1r − Lπ)]

+(1/2i)cJ(L′S′;LS)exp[ik1r]} (56d)

Comparison with the corresponding old radial wave function (35) gives

cJ(L′S′;LS) = cJ (LS;L′S′). (55)

This relation shows that ||cmm|| is a symmetric matrix, and with the help of (54)
demonstrates that each element of the matrix is determined up to a factor ±1.

From the results of the last two paragraphs, we conclude that a knowledge of
the Fredholm determinant (51) of our integral equations is sufficient, in the absence
of external magnetic fields, to determine all elements of the scattering matrix up to
a transformation by a diagonal matrix whose elements dii are ±1. Once this 2g−1

fold arbitrariness in choice of signs has been resolved for one energy, perhaps by
explicit solution of the integral equations,24 the principle of continuity with respect
to variation of the energy is sufficient to determine the c’s completely for all energies
from the Fredholm determinant, (E;K1, . . . ,Kg) of the integral equation.

Transmutation

Cross sections giving the number and angular distribution of disintegration
products may be calculated on the same line as the scattering probabilities con-
sidered above. The kernel of the integral equation is in fact given by the previous
expression (44), where now, however, several of the quantities E −Ei are positive,
corresponding to the several possible unstable configurations or modes of disinte-
gration of the compound nucleus. Associated with each unstable configuration i
there are the phase shifts KJ(iLS), related by the condition

D(E;KJ(1 . . .), . . . ,KJ(iLS), . . .) = 0. (56)

From the shape of the corresponding surface in K space and possibly by making
explicit solutions of the integral equations in certain cases (see preceding discus-
sion) we find the elements of a unitary matrix ||cJ(jL′S′; iLS)|| whose elements
describe the asymptotic behavior of the particular solutions f iLSJ (jL′S′r) of the
wave equation:

f iLSJ (jL′S′r) ∼ −(1/2i)δijδLL′δSS′

×exp[ −i(kjr − Lπ)] + (1/2i)(ki/kj)
1/2

×cJ (jL′S′; iLS)exp[ikjr].

(57)

24Cf. remarks in discussion.
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The cross section per unit solid angle for the process in which groups Ii and IIi (for
example, 2He2 and 0n

1) collide with random spin orientation and groups Ij and
IIj (1H3 and 1H1) separate along a line oriented at an angle θ with respect to the
original direction is

σij(θ) = [(2SiI + 1)(2SiII + 1)4kik
j ]q−1

∑

S,mS

∑

mS′

×|
∑

J,L,L′
cJ(jL′S′; iLS){JLS;mS 0 mS}

×{JL′S′;mSmS −mS′mS′}(4L+ 2)1/2

×Θ
mS−ms′ )
L′ (θ)|2 (i 6= j),

σii(θ) = σii (Eq. (43)).

(58)

Discussion

Validity of treatment

The connection which we have obtained between the scattering and disintegration
cross sections and a certain surface

D(E;K1, . . . ,Kg) = 0

defined by the Fredholm determinant of an integral equation, does not depend for
its validity on the accuracy of what we have called the method of resonating group
structure. The derivation, in fact, made use only of certain quite general asymptotic
properties of the solution of the wave equation. Consequently, the same method of
treatment goes through also in the case where that kernel is employed in the integral
equation (30) which will give the rigorous solution of the problem in question- i.e.,
a kernel S, built up somewhat as (44), but from the accurate wave functions of the
individual groups and the accurate solutions of the problem of N free neutrons and
protons, followed by the energy operator H representing individual particle rather
than group interactions. It appears feasible to carry out such a treatment of the
nuclear three-body problem in detail.

Numerical calculations

However the fundamental integral equation is derived, the central problem from
the computational point of view is to evaluate the associated Fredholm determinant.
A diagonal expansion on analytic lines, following Eq. (33), is not in general possible,
although the possibility is not excluded of finding a suitable analytic approximation
to S, such that the powers, Sn, can be evaluated explicitly.
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A straightforward numerical calculation offers another procedure, which can
always be carried through to a finish. For a simple illustration, we suppose that
the system in question is to be described by a single configuration, in which the
two groups have no spin. The range of values of the intergroup separation, r = 0 to
r = r∗, over which the interaction departs appreciably from its asymptotic value,
is replaced by the set of points r1 = a, r2 = 2a, . . . , rp = pa, the spacing, a, being
taken sufficiently small. The integral equation

f(r) +

∫
S(r, ρ)f(ρ)dρ = 0 (30′)

may then, by Simpson’s rule, be replaced approximately by the set of linear equa-
tions

fi +

p∑

α=1

Siαfα = 0, (i = 1, 2, . . . , p), (30′′)

where
f1 = f(a), f2 = f(2a), . . .

and
S11 = (2a/3)S(a, a), S12 = (4a/3)S(a, 2a),

S13 = 2a/3)S(a, 3a), . . . (30′′′)
S21 = (2a/3)S(2a, a), . . . , etc.

The kernel S may itself be calculated by a similar procedure of approximation to
Eq. (44):

Smn =

p∑

α=1

GmαHαn. (44′′)

Here the matrix ||Gmn|| bears the same type of relation to the function

G(r, ρ) = (2µ/~2k){GL(kr)FL(kρ)
+ctgKFL(kr)FL(kρ)} (ρ < r)
= (2µ/~2k){GL(kρ)FL(kr)
+ctgKFL(kr)FL(kρ)} (ρ > r)

that ||Smn|| bears to S(r, ρ), except for one detail. Since G(r, ρ) has a kink (dis-
continuous first derivative) at the point ρ = r, the Simpson coefficients 2/3, 4/3,
etc., must be slightly modified to make the summation (44′′) give the best agree-
ment with the integration of (44). Written following the order of (30′′′), the proper
coefficients for the calculation of the matrix G are

2a/3, 4a/3, 2a/3, 4a/3, 2a/3, 4a/3, 2a/3, . . .
9a/8, 6a/8, 9a/8, 17a/24, 4a/3, 2a/3, . . .
2a/3, 4a/3, 2a/3, 4a/3, 2a/3, 4a/3, 2a/3, . . .

17a/24, 9a/8, 6a/8, 9a/8, 9a/8, 17a/8, . . . etc.
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In order for (30′′) to possess a solution, the Fredholm determinant

D(E,K) =

∣
∣
∣
∣
∣

1 + S11 S12 . . . . . .
S21 1 + S22 . . . . . .
. . . . . . . . . . . .
. . . . . . . . . 1 + Spp

∣
∣
∣
∣
∣

must vanish. For stable states (E < 0, ctgK = 0) the Fredholm determinant
is evaluated for one energy value, then another, and so on; the curve D(E) as
a function of energy crosses the horizontal axis at the eigenwerte. The case of
scattering (and in general, disintegration) is treated in the same way.

Though laborious, it is quite feasible to deal with determinants of the 30th
order. The procedure of evaluation is straightforward on a calculating machine:25

The lowest row dp1, dp2, . . . , dpp) we abbreviate δik + Sik by dik) is multiplied by
(dp−1,p/dpp) and subtracted from the (p − l)th; by (dp−2,p/dpp) and subtracted
from the (p − 2)nd row, etc. When all elements in the pth column are reduced to
zero, (except dpp), the (new) second row is used in the same way to eliminate all
elements in the (p − 1) the column except dp,p−1 and dp−1,p−1; and so on. The
value of the determinant is given by the product of the diagonal elements of the
final matrix: D = d′11d

′
22 . . . d

′
pp. If this vanishes, the wave function (vector) f

may easily be found, if desired, by recursive solution: f1 = 1, f2 = −d′21f1/d
′
22;

f3 = −(d′31f1 + d′32f2)/d′33, etc. The smoothness of the curve f(r) drawn through
the values so obtained furnishes a good check on the calculations.

Modifications in procedure

So far we have assumed that the interaction falls off rapidly. If it follows the
Coulomb law for large distances, then in the calculations we may take it to be
broken off at r = r∗. The asymptotic form of the wave functions we obtain in this
way corresponds to zero field from r∗ to∞; we then fit the Coulomb functions on at
r∗, in such a way26 as to have the same logarithmic derivative as those combinations
of zero field solutions described by the phase shifts K. This procedure determines
the phase shifts K ′ of the solution for the actual field, measured with respect to
the solutions for a pure Coulomb field. The scattering cross section is known27 in
terms of K ′, for the case of elastic collisions with zero spin, and may be derived
for scattering and disintegration processes involving groups with spin along the
lines described above. An alternative procedure, using for FL and GL the Coulomb
wave functions, would require more detailed tables of these functions than are now
available.

In the actual problems treated so far by the method we have described, it
appears to be a general rule that the larger the number of particles involved, the

25Cf. James and Coolidge, J. Chem. Phys. 1,834 (1933).
26See John A. Wheeler, “Wave Functions for Large Arguments by the Amplitude Phase

Method,” Phys. Rev. 52, 1123 (1937).
27Cf. Mott and Massey, reference 13, p. 275.
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more closely ∫ ∑

jL′S′

IJ(iLSr; jL′S′ρ)fJ(jL′S′ρ)dρ

approaches to being the negative of fJ(iLSr), although of course the operator
δijδLL′δSS′δ(r− ρ) + IJ(. . .) is always positive definite. This behavior is connected
with the large number of nodes present in the total wave function Ψ owing to its
antisymmetry properties. In fact,

∫
Ψ∗Ψdτ is very much smaller than the integral∫

χ∗χdτ of any one of the (not antisymmetrized) parts χ (Eq. (36)) from which Ψ
is built up, and this comes to expression in the feature we have mentioned. The
appearance of the operator δ + I in the denominator of the expectation value of
the energy has the consequence that calculations are sensitive to the accuracy with
which

∫ ∫
f∗(r[δ(r − ρ) + I(r, ρ)]f(ρ)drdρ is determined.

This would suggest that ϕ = [δ + I]1/2f be introduced as dependent vari-
able, instead of f itself; for ϕ has the same asymptotic behavior as f and gives∫
ϕ∗(r)ϕ(r)dr for the integral in question. The method is known by which the

positive square root of a positive definite Hermitian matrix may be obtained,28 but
we do not carry out here the consequences of this possible improvement on the
procedure we have already described.

The development above was given in detail only for configurations consisting
of two groupings. When three groupings interact, one approximate mode of de-
scription is to regard the configuration as composed of two groupings, the internal
wave function of one of which is in turn determined by the method of resonating
group structure. More accurate, also more symmetric, is the direct extension to
three bodies of the type of kernel we have used for two. Instead of the functions
FL, GL of one variable, r, we must then have a combination of functions of three
variables r12, r13, r2 built up into a Green’s function. for the “radial” motion of
three free bodies, the angular part of the motion having been separated out by
known29 methods.

By introducing a dependence of the individual group wave functions on the
intergroup distances, we get an approximation to the total wave function which
corresponds to better values for the absolute energy than is otherwise obtained. In
some ways this modification is analogous to a polarization effect, but it must be
remembered that the interaction between the various groups is far too intimate for
such a simple change to make the total wave function really approach in full detail
to the accurate solution of the given quantum mechanical problem. Rather such a
refinement is to be taken in the spirit of the method of resonating group structure,
in which we try to build up a suitable description of the whole system from what
we know of its parts, being guided throughout by the variation principle. Use of
a “polarized” group wave function appears to be especially suitable in treating
such a problem as that of proton-deuteron collisions. On the other hand there are

28Cf. M. Born and P. Jordan, Elemenlare Quantenmechanik (Berlin, 1930), p. 69.
29Cf. G. Breit, Phys. Rev. 35, 569 (1930), and especially J. 0. Hirschfelder and E.

Wigner, Proc. Nat. Acad. 21, 113 (1935), where the corresponding separation of angles
is treated in the case of N bodies.
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situations (as when the available energy is large) where it is more convenient, and
indeed absolutely necessary, to take into account excited group states in making the
proper allowance for the interaction between the various groups (we use the word
“group” here in the extended sense employed throughout the present discussion, in
which there is no one to one correspondence between a given group and definite
neutrons and protons picked out of the total system). Analogy with the polarization
problem in atomic physics make it clear that explicit dependence of wave functions
on separation, and excitation of higher states are to a considerable extent even in
the nuclear problem equivalent ways of allowing for the same thing, and indeed the
mathematical treatment given above indicated that it was practically impossible to
introduce both methods of description at the same time in a consistent manner. The
question as to which excited states of the individual groups are most important in
the description of the compound system is of course an important one in the actual
applications, and has received so far only a very general kind of answer.30

A thoroughgoing treatment of collision processes for nuclei of medium and high
atomic weight in the detail we have mentioned in this paper appears to be out of the
question. The considerations of Bohr31 point rather to a statistical approach, based
on the analogy between nuclear structure and the liquid state, as more fruitful. For
this reason a study of the detailed correspondence between the two viewpoints
would be very valuable. In this connection the importance of symmetry arguments
has already been pointed out.28

For sufficiently light nuclei, on the other hand, the connection between nuclear
forces and observations on collisions and transmutations can be traced out with
sufficient accuracy to make possible definite conclusions about the interactions in-
volved. The method of resonating group structure described above has been used
to treat the interaction between two normal alpha-particles,32 and is being applied
to other problems,33 where further details will be given.

30Preceeding paper.
31Niels Bohr, Nature 137, 344 (1936); also unpublished lectures summarized in Science

86, 161 (1937).
32To be published.
33Four-particle problem: preliminary report, Hermon Parker, Paper No. 3, Chapel

Hill-Durham meeting of the American Physical Society, Feb. 19-20, 1937. Five-particle
problem: Miss K. Way, University of North Carolina, in progress.
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